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ABSTRACT

The migration of pathogen-specific T cells into nonlymphoid tissues, such as the lung, is critical to control peripheral infections.
Use of in vivo intravascular labeling of leukocytes has allowed for improved discrimination between cells located in the blood
from cells present within peripheral tissues, such as the lung. This is particularly important in the lung, which is comprised of an
intricate network of blood vessels that harbors a large proportion of the total blood volume at any given time. Recent work has
demonstrated that >80% of antigen-specific effector CD8 T cells remain in the pulmonary vasculature following an intratra-
cheal infection with a systemic viral pathogen. However, it remains unclear what proportion of effector CD8 T cells are located
within lung tissue following a localized respiratory viral infection. We confirm that most effector and memory CD8 T cells are
found in the vasculature after an intranasal infection with the systemic pathogens lymphocytic choriomeningitis virus (LCMV)
or vaccinia virus (VACV). In contrast, following pulmonary viral infections with either respiratory syncytial virus (RSV) or in-
fluenza A virus (IAV), 80 to 90% of the antigen-specific effector CD8 T cells were located within lung tissue. Similarly, the major-
ity of antigen-specific CD4 T cells were present within lung tissue during a pulmonary viral infection. Furthermore, a greater
proportion of gamma interferon-positive (IFN-��) effector CD8 and CD4 T cells were located within lung tissue following a lo-
calized respiratory viral infection. Our results indicate that T cells exhibit significantly altered distribution patterns dependent
upon the tissue tropism of the infection.

IMPORTANCE

The migration of T cells to nonlymphoid sites, such as the lung, is critical to mediate clearance of viral infections. The highly vas-
cularized lung holds up to 40% of blood, and thus, the T cell response may be a reflection of lymphocytes localized to the pulmo-
nary vasculature instead of lung tissue. We examined the localization of T cell responses within the lung following either a local-
ized or systemic viral infection. We demonstrate that following intranasal infection with a systemic pathogen, most T cells are
localized to the pulmonary vasculature. In contrast, T cells are primarily localized to lung tissue following a respiratory viral in-
fection. Our results demonstrate vast differences in the localization of T cell responses within the lung parenchyma between
pathogens that can replicate locally versus systemically and that intravascular antibody labeling can be utilized to assess the lo-
calization patterns of T cell responses in nonlymphoid organs.

An intricate network of blood vessels is associated with the
bronchial tree and alveolar sacs of the lung (1). The vascular

network is necessary for respiratory function as well as for the
trafficking of leukocytes into the lung during infection (2). Leu-
kocytes that remain in the vasculature can be detected by intrave-
nous (i.v.) administration of a specific antibody prior to perfusion
and tissue isolation (3–5). Recent work has shown that 80 to 95%
of T cell receptor (TCR) transgenic effector and memory CD8 T
cells are confined to the pulmonary vasculature following an in-
tratracheal lymphocytic choriomeningitis virus (LCMV) infec-
tion despite extensive lung perfusion (4). Importantly, LCMV dis-
seminates systemically even after an intratracheal or intranasal
(i.n.) infection. Therefore, it remains unclear what proportion of
T cells isolated from a perfused lung are within the lung tissue
versus the pulmonary vasculature following an intranasal inocu-
lation with a virus causing a localized respiratory infection.

CD8 T cells play a critical role in mediating clearance of acute
localized respiratory viral infections such as those caused by respira-
tory syncytial virus (RSV) and influenza A virus (IAV) (6, 7). Due to
the critical role CD8 T cell responses play in mediating the clearance
of respiratory viral infections, we sought to determine whether the
majority of endogenous virus-specific CD8 T cells were located
within lung tissue following a localized pulmonary viral infection. In

contrast to systemic infections, our results demonstrate that 80 to
90% of endogenous virus-specific effector and memory CD8 T cells
are located within lung tissue following a localized pulmonary viral
infection. Furthermore, using cytokine reporter mice, we show that
gamma interferon-positive (IFN-��) endogenous effector CD8 T
cells are highly enriched within lung tissue following a respiratory
viral infection compared to a systemic infection. These data indicate
that the tissue tropism of a virus significantly impacts the localization
pattern of virus-specific effector and memory CD8 T cells.

MATERIALS AND METHODS
Mice, adoptive transfers, and infection. C57BL/6NCr mice (6 to 8 weeks
old) were obtained from the National Cancer Institute (Frederick, MD).
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For adoptive transfers, 1 � 103 naive P14 CD90.1/CD90.2 cells were in-
jected i.v. 1 day prior to infection with one of the following: (i) 2 � 105

PFU LCMV Armstrong intraperitoneally (i.p.); (ii) 5 � 105 PFU LCMV
Armstrong i.n.; or (iii) 230 50% tissue culture infective units (TCIU50) of
IAV strain A/Puerto Rico/8/1934 (PR8) expressing GP33-41 (i.e., amino
acids 33 to 41 from LCMV glycoprotein) (IAV-GP33) (i.n.). BALB/
cAnNCr mice (6 to 8 weeks old) were infected i.n. with 5 � 105 PFU
LCMV Armstrong, 5 � 103 PFU vaccinia virus (VACV) strain Western
Reserve, 110 to 150 TCIU50 IAV PR8 or 1.6 � 106 RSV A2. Ifng/CD90.1
knock-in mice (8) obtained from Stanley Perlman (University of Iowa)
with permission from Casey Weaver (University of Alabama at Birming-
ham) were infected i.n. with either 5 � 105 PFU LCMV Armstrong or 110
TCIU50 IAV PR8. All experimental procedures involving mice were ap-
proved by the University of Iowa Animal Care and Use Committee.

Intravascular antibody labeling and tissue processing. One micro-
gram of CD90.2-PE (CD90.2 labeled with phycoerythrin [PE]) (clone
53-2.1) antibody was injected via the tail vein i.v. 3 min prior to euthana-
sia, and cells from various tissues were subsequently prepared as previ-
ously described (4).

Tetramer and antibody staining. Cells were incubated with a single
tetramer, either LCMV GP33-41 or IAV NP366-374 (i.e., amino acids 366 to
374 from nucleoprotein) for C57BL/6 mice or LCMV NP118-126, VACV
F226-34, IAV HA518-526 (i.e., amino acids 518 to 526 from hemagglutinin),
or RSV M282-90 (i.e., amino acids 82 to 90 from M2) for BALB/c mice
(obtained from the NIH Tetramer Facility) and subsequently stained for
extracellular expression of CD90.2 (clone 53-2.1), CD8 (clone 53-6.7),
CD4 (clone RM4-5), CD11a (clone M17/4), and CD49d (clone R1-2) and
intracellular expression of Foxp3 (clone FJK-16S; all antibodies obtained
from BioLegend, San Diego, CA) as previously described (9).

Plaque assay. Lungs were harvested on day 4 postinfection (p.i.).
Whole lungs were homogenized, and supernatants were subsequently col-
lected and flash-frozen. For plaque assay, supernatants were thawed and
plated on BSC40 cells for VACV-infected lungs, MDCK cells for IAV-
infected lungs, or Vero cells for either LCMV- or RSV-infected lungs as
previously described (10–12). Briefly, samples were diluted in serum-free
medium and plated on the appropriate cell line with rocking for 1 to 1.5 h.
For LCMV and RSV, cells were subsequently overlaid with a 1:1 ratio of
serum-containing medium and 1% agar. On day 3 for LCMV or day 5 for
RSV, the plaques were stained with a 1:1 ratio of medium and 1% agar
containing 0.01% neutral red. The plaques were visually quantified 24 h
later. For IAV plaque assays, infected MDCK cells were overlaid with a 1:1
ratio of serum-containing medium and 1.6% agar. On day 3 p.i., the agar
plug was removed, and the cells were fixed with 70% ethanol. The IAV-
infected MDCK cells were subsequently stained with crystal violet and
rinsed with warm water, and plaques were immediately counted. For
VACV plaque assays, serum-containing medium was added to the VACV-
infected BSC40 cells. On day 2 p.i., the infected cells were fixed with 7%
formaldehyde, stained with crystal violet, and rinsed with warm water.
VACV plaques were subsequently counted for virus quantification.

Statistical analysis. Data were compiled, and statistical analysis was
calculated by performing a one-way analysis of variance (ANOVA) with a
Tukey’s posttest for more than two groups or a Student’s unpaired t test
for two groups in Prism software (GraphPad Software, San Diego, CA).
Values that were significantly different are indicated as follows: �, P �
0.05; ��, P � 0.01; ���, P � 0.001.

RESULTS
Virus-specific CD8 T cells preferentially localize to the lung fol-
lowing RSV infection. Intravascular staining has been utilized in
several recent studies to discriminate between leukocytes in lung
tissue versus pulmonary vasculature and has been previously
shown not to stain perivascular cells (3–5). To determine the pro-
portion of endogenous antigen-specific CD8 T cells that have en-
tered lung tissue following a localized pulmonary viral infection,
RSV-infected mice were injected intravenously with an anti-

CD90.2 antibody (Fig. 1A) to specifically label all T cells in the
peripheral blood. In addition, T cells localized within either sec-
ondary lymphoid tissues or bronchoalveolar lavage (BAL) fluid
were protected from intravascular labeling with antibody (Fig.
1A). Antibody specific to CD90.2 was chosen to avoid any poten-
tial issues with the known downregulation of CD8� on murine
CD8 T cells following antigen stimulation (13). The frequency of
total CD8 T cells not labeled with antibody, representing cells in
lung tissue, increased following RSV infection, peaking at day 8
p.i. (Fig. 1B). Similarly, the frequency of unlabeled CD11ahi CD8lo

T cells, used to define antigen-specific cells as previously described
(13, 14), and M282-90 tetramer-positive CD8 T cells also peaked in
lung tissue at day 8 p.i. The frequency of total CD8 T cells that
remained unlabeled in the lung decreased significantly by day 30
p.i., consistent with contraction of the T cell response. However,
the frequency of unlabeled antigen-specific CD8 T cells located
within lung tissue remained relatively stable and similar to the
peak of the response. Overall, approximately 85% of tetramer-
positive CD8 T cells in the perfused lung remained in the lung
tissue for up to 30 days following RSV infection. Furthermore,
�95% of antigen-specific CD8 T cells that expressed either one of
the tissue-resident markers CD69 and CD103 (15–17) were lo-
cated within lung tissue at day 30 p.i. (Fig. 1D). However, only
40% or 50% of antigen-specific CD8 T cells within lung tissue
expressed either CD69 or CD103, respectively, 30 days following
RSV infection (Fig. 1E). In contrast to the antigen-specific cells,
the frequency of unlabeled CD11alo CD8hi naive T cells remained
relatively constant, suggesting that naive T cells do not preferen-
tially enter the lung following infection.

Similar to CD8 T cells, conventional CD4 T cells shared the
same localization pattern within the lung parenchyma following
RSV infection (Fig. 1C). The frequency of CD4 T cells that were
unlabeled within lung tissue increased following infection, peak-
ing at day 8 p.i., but decreased over time in correlation with con-
traction of the T cell response. However, approximately 70% of
antigen-experienced CD11ahi CD49d� CD4 T cells (18) remained
localized to lung tissue up to 30 days following RSV infection,
whereas the frequency of unlabeled naive CD11alo CD49d� CD4
T cells was unchanged. Regulatory Foxp3� CD4 T cells exhibited a
pattern of localization within lung tissue that was similar to that of
antigen-experienced CD4 T cells, peaking at day 8 p.i. and de-
creasing over time. This suggests that regulatory CD4 T cells lo-
calize within lung tissue coincident with the effector T cell re-
sponse to suppress the adaptive immune response.

Increased frequency of effector T cells in lung tissue follow-
ing pulmonary infections. To determine whether a localized pul-
monary infection would induce the preferential migration of ef-
fector CD8 T cells into lung tissue compared to a systemic
infection, BALB/c mice were infected i.n. with IAV or RSV, both of
which cause infections that are localized to the lung, or with
LCMV or VACV, both of which cause systemic infections. On day
8 following either IAV or RSV infection, there was a significant
(P � 0.01) increase in the frequency of unlabeled CD8 T cells
located in lung tissue compared to intranasal infection with the
systemic pathogens LCMV and VACV (Fig. 2A). In addition,
there was a significantly (P � 0.01) increased frequency of unla-
beled antigen-specific tetramer-positive CD8 T cells in lung tissue
on day 8 following IAV and RSV infection than after either LCMV
or VACV infection (Fig. 2B). Similarly, following either IAV or
RSV infection at day 8 p.i., there was a significantly (P � 0.01)
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increased frequency of antigen-specific CD11ahi CD8lo T cells that
were unlabeled in lung tissue compared to either LCMV or VACV
(Fig. 2C). However, there was no difference in the frequency of
unlabeled CD11alo CD8hi naive T cells in lung tissue following any
infection (Fig. 2D). These data indicate that antigen-specific CD8
T cells preferentially enter lung tissue and are not simply trapped
within the pulmonary vasculature following a viral infection re-
stricted primarily to the respiratory tract.

The distribution of CD4 T cells following systemic and local-
ized pulmonary infections in BALB/c mice was also assessed by
intravascular labeling. Recent work by Turner et al. indicates that
tissue-resident memory CD4 T cells primarily reside at locations
determined by the initial site of infection and demonstrates that
the majority of memory CD4 T cells are localized within lung
tissue following IAV infection (19). We find that similar to CD8 T
cells, conventional Foxp3�, regulatory Foxp3�, and antigen-spe-
cific CD11ahi CD49d� CD4 T cells were preferentially localized
within lung tissue following either IAV or RSV infection com-

pared to either LCMV or VACV infection at day 8 p.i. (Fig. 3A to
C). Similar to CD11alo CD8hi naive T cells, there was no difference
in the frequency of unlabeled CD11alo CD49d� CD4 T cells be-
tween infections (Fig. 3D), indicating that naive CD4 T cells were
not preferentially recruited to the site of infection. These data
suggest that similar to antigen-specific CD8 T cells, activated CD4
T cells preferentially migrate into the lung following a localized
pulmonary infection. Importantly, these differences in CD4 and
CD8 T cell migration between localized and systemic viral respi-
ratory infection were not due to deficient virus replication in lungs
(Fig. 4). Following i.n. infection, lung viral titers were similar for
LCMV, VACV, IAV, and RSV (Fig. 4). Furthermore, there was
increased virus in LCMV- and VACV-infected lungs following i.n.
infections compared to i.p. infections.

To determine whether monoclonal TCR transgenic CD8 T
cells exhibit localization patterns similar to those of endogenous
polyclonal T cells, we adoptively transferred 1 � 103 LCMV GP33-
specific P14 CD8 T cells into naive C57BL/6 mice and challenged

FIG 1 Preferential recruitment of antigen-specific CD8 T cells to the lung following pulmonary infection. (A) Representative dot plots of labeled T cells following
i.v. anti-CD90.2 antibody administration. The numbers in the graphs are the frequencies of unlabeled CD8 T cells on day 8 after RSV infection. PBL, peripheral
blood leukocytes; dLN, draining lymph nodes; BAL, bronchoalveolar lavage fluid. (B and C) Frequencies of unlabeled CD8 T cell (B) or CD4 T cell (C)
populations at multiple time points following RSV infection of BALB/c mice (n 	 8). (D) Concatenated dot plots of the frequency of unlabeled CD69� or
CD103� M282-90 tetramer-positive (Tet�) CD8 T cells at day 30 p.i. (E) Frequency of unlabeled M282-90 tetramer-positive CD8 T cells that are either CD69� or
CD103� at day 30 p.i. Combined results are shown from two independent experiments.
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them with LCMV i.p., LCMV i.n., or recombinant IAV-GP33 i.n.
On day 8 p.i., a significantly (P � 0.001) higher frequency of P14
CD8 T cells were located within lung tissue following an IAV-GP33

infection compared to either i.p. or i.n. LCMV infections (Fig.
5A). Furthermore, using the LCMV clone 13 strain, which has an
increased capacity to disseminate compared to LCMV Armstrong
(20, 21), a similar localization pattern of P14 cells in the lung was
observed following i.n. infection (Fig. 5B).

When assessing the endogenous T cell response in the recipient
mice, a higher frequency of total CD8 T cells was localized to lung
tissue following challenge with IAV-GP33 compared to either
route of LCMV infection (Fig. 5C), similar to the results observed
for BALB/c mice. Furthermore, a significantly higher proportion
of endogenous GP33-41 tetramer-specific CD8 T cells were located
within lung tissue following a localized IAV-GP33 infection (Fig.
5D). Taken together, our data demonstrate that the localization
pattern of antigen-specific T cells is governed by both the route of
infection and tissue tropism of the pathogen.

The majority of IFN-�� effector CD8 T cells are located
within the lung following a respiratory virus infection. Our data
thus far have indicated that there is an increased frequency of
antigen-specific T cells within the lung tissue following a localized
pulmonary infection. However, we further sought to determine
whether there were functional differences between CD8 T cells
recruited into the lung compared to cells in the peripheral blood
following a localized respiratory tract infection versus a systemic
infection. To address this question, we infected IFN-� reporter
mice that express CD90.1 following induction of Ifng gene tran-
scription (8) with either LCMV or IAV i.n. Following infection

with either virus, a large portion of tetramer-positive CD8 T cells
were also CD90.1�, indicating that these cells had recently pro-
duced IFN-� (Fig. 6A). To compare CD90.1 expression in the
different infections, values were normalized by determining the
ratio of the percentage of CD90.1� unlabeled tetramer-positive
CD8 T cells to the percentage of CD90.1� labeled tetramer-posi-
tive CD8 T cells. There was an approximately 2-fold increase in
CD90.1/IFN-��, tetramer-positive CD8 T cells (P � 0.001) local-

FIG 2 Increased lung localization of antigen-specific CD8 T cells following a
restricted pulmonary infection. On day 8 p.i., cells were isolated from the lung
following i.v. labeling in BALB/c mice. (A to D) Frequencies of unlabeled total
(A), tetramer-positive (B), CD11ahi CD8lo (C), and CD11alo CD8hi (D) T cells
following LCMV, VACV, IAV, and RSV infection. A one-way ANOVA with a
Tukey’s posttest was performed. Values that are significantly different (��, P �
0.01) are indicated by bars and two asterisks. Data are combined from two
independent experiments (n 	 8, where n is the number of mice from both
experiments combined).

FIG 3 CD4 T cells are preferentially localized to the lung following a local
pulmonary infection. Lymphocytes were isolated from the lung on day 8 p.i.
following i.v. labeling in BALB/c mice. (A to D) Frequencies of unlabeled
conventional Foxp3� (A), regulatory Foxp3� (B), CD11ahi CD49d� (C), and
CD11alo CD49d� CD4 (D) T cells following LCMV, VACV, IAV, and RSV
infection. A one-way ANOVA with a Tukey’s posttest was performed. Values
that are significantly different are indicated by bars and asterisks as follows: �,
P � 0.05; ��, P � 0.01; ���, P � 0.001. Combined results from two indepen-
dent experiments are shown (n 	 8).

FIG 4 Virus replication in the respiratory tract following localized or systemic
infections. Viral titers were quantified in the lungs at day 4 following either
LCMV, VACV, IAV, or RSV infection by plaque assay. LCMV and VACV were
administered i.p. and i.n. Combined results from two independent experi-
ments are shown (n 	 7 or 8).
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ized to lung tissue following IAV infection compared to LCMV
infection (Fig. 6B). Furthermore, the geometric mean fluores-
cence intensity (gMFI) of CD90.1 expression was significantly
(P � 0.01) increased in the unlabeled tetramer-positive CD8 T
cells following IAV infection than in either the labeled IAV-spe-
cific CD8 T cells or LCMV-specific CD8 T cells (Fig. 6C). Similar
to CD8 T cells, there was a significantly increased proportion of
antigen-experienced CD4 T cells (P � 0.01) localized to lung tis-
sue following a localized IAV infection compared to LCMV infec-
tion (Fig. 6D). Furthermore, the antigen-experienced CD4 T cells
within the lung tissue had a higher gMFI of CD90.1 compared to
cells in the pulmonary vasculature following IAV infection and
not LCMV infection (Fig. 6E). These data demonstrate that
IFN-�� effector CD8 and CD4 T cells are enriched within lung
tissue following a pulmonary viral infection compared to a sys-
temic viral infection.

DISCUSSION

Previous work has demonstrated that 80 to 95% of effector and
memory TCR transgenic CD8 T cells are confined to the pulmo-
nary vasculature following an intratracheal challenge with the sys-
temic pathogen LCMV (4). Similarly, we demonstrate following
an intranasal infection with the systemic pathogen LCMV or
VACV that the majority of CD8 T cells remain in the pulmonary
vasculature of the lung. In contrast, challenge with either RSV or
IAV, both of which replicate only in the respiratory tract, induce
the preferential migration of antigen-specific effector CD8 T cells

into lung tissue. This is important, as CD8 T cells play a critical
role in mediating clearance of respiratory viral infections such as
those caused by RSV and IAV (6, 7, 22, 23). In addition, we find
that the majority of IFN-�� effector CD8 T cells are located within
the lung following a localized respiratory infection compared to a
systemic infection. This suggests that there is a greater proportion
of fully differentiated CD8 T cells capable of exerting effector
functions located within lung tissue following a localized respira-
tory infection where these cells play a critical role in mediating
viral clearance.

We also observed that the frequency of RSV-specific CD8 T
cells located within lung tissue remains relatively high (
85%)
through day 30 p.i. Expression of CD69 and CD103 has been used
to identify tissue-resident memory CD8 T cells that have been
shown to form stable long-lasting populations in the lung tissue
following respiratory viral infections (24–27). Up to 40% or 50%
of the antigen-specific CD8 T cells expressed either CD69 or
CD103, respectively, and �95% of these cells were unlabeled, sug-
gesting that they are tissue-resident memory T cells. The role of
tissue-resident memory T cells has not been extensively examined
in the lung environment following RSV infection. However, stud-
ies have indicated that tissue-resident memory T cells correlate
with local protective immunity during either Sendai virus or in-
fluenza virus infection (28, 29). Thus, it is likely that the tissue-
resident memory CD8 T cells following RSV infection contribute
to protection against secondary infections. In addition, this

FIG 5 Increased frequency of antigen-specific CD8 T cells confined to lung tissue following localized respiratory viral infection. P14 CD8 T cells were adoptively
transferred i.v. into C57BL/6 mice and infected the following day with LCMV Armstrong i.p. or i.n. or IAV-GP33 i.n. (A) Concatenated dot plots depicting the
frequency of CD90.2 unlabeled CD8 T cells of P14 cells in the lung at day 8 p.i. The numbers in the graphs represent the mean percentages of CD90.2 P14 cells
that are i.v. label negative � standard errors of the means (SEM) for the groups. (B) Frequency of unlabeled P14 cells on day 8 in the lung following infection with
either LCMV Armstrong (given i.n.) or clone 13 (CL13) (given i.n. or i.p.). (C and D) Frequencies of unlabeled endogenous CD8 T cells (C) and GP33-41

tetramer-positive endogenous CD8 T cells (D). Values that are significantly different (P � 0.001) from the values for the other experimental groups are indicated
by three asterisks. Combined results from two independent experiments are shown (n 	 8).
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unique subset of memory cells has been characterized and shown
to contribute to local immunity in the skin, brain, vaginal tract,
and intestinal epithelium (17, 30–33).

Similar results were observed for the CD4 T cell response. The
majority of antigen-experienced effector and memory CD4 T cells
were located within lung tissue following localized respiratory in-
fections caused by either RSV or IAV compared to a significantly
reduced frequency following infection with systemic pathogens.
These results are in agreement with recent work by Turner et al.
which shows that most of the effector CD4 T cells are located

within lung tissue following IAV infection (19). In addition, lung
niches permit the formation and maintenance of IAV-specific,
tissue-resident memory CD4 T cells. We also find that following
RSV infection, the majority of antigen-experienced CD4 T cells
remain in lung tissue for up to 30 days.

Our findings indicate the distinct localization patterns of effec-
tor T cells within lung tissue following systemic versus localized
respiratory viral infections. Our results highlight the need to ac-
curately assess the total number of antigen-specific T cells within
lung tissue following a pulmonary infection with a pathogen ca-
pable of replicating systemically. In contrast, the majority of anti-
gen-specific T cells are found within the lung tissue following in-
fection with a pathogen that replicates primarily in the respiratory
tract. This lessens the need to take measures to discriminate the
location of antigen-specific T cells following a localized respira-
tory viral infection. Overall, our study indicates that i.v. labeling of
T cells using a CD90-specific antibody is a straightforward method
to distinguish both CD4 and CD8 T cells in peripheral blood from
cells in the lung and that virus-specific CD8 T cells rapidly enter
lung tissue following a localized respiratory viral infection.
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